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Abstract  

This document describes recent developments in privacy-preserving data analysis, with particular 

focus on secure multiparty computation and machine learning. 

As the availability and accessibility of measurement and storage devices increases, so too does the 

body of medical data that is potentially available for statistical research. This puts us in a difficult 

position: how can we use this data to further advance our understanding of important medical and 

biological processes, while respecting the privacy-sensitive nature of the data, as well as the 

interests of the relevant stakeholders? Although such research generally has no need for personal 

attributes such as for example names or home addresses, it could still be necessary to take sensitive 

information such as the age of the data subject into account. Thus we cannot always avoid the usage 

of privacy-sensitive data, so that we have to find other ways to ensure that such data is handled 

responsibly. Although there are many moral, legal and technological aspects to this issue, in this 

paper we will focus on the technological side: we examine the state in the art in areas such as secure 

multiparty computation, machine learning and homomorphic encryption to perform privacy-

respecting data analysis on (possibly distributed) data repositories. 

1 Introduction 

 

1.1 Secure multiparty computation 

Secure multiparty computations allow multiple parties to jointly compute some function in such a 

way that each party keeps its input data private to itself. For example, a number of hospitals may 

wish to jointly mine their medical data, or a patient may want to evaluate his personal medical data 

against a remotely executed algorithm without divulging his data. An immediate question that 

arises, which is out of the scope of this paper, is whether the output of such computations is itself 

sufficiently privacy-preserving, and thus safe for publication. Instead we will assume that the result 

of the computation is either safe or deemed essential. Apart from the privacy requirement (no party 

should learn anything more than what can be derived from its prescribed output), correctness is also 

important (each party is guaranteed that the output that it receives is correct), as well as guaranteed 

output delivery (dishonest parties should not be able to prevent honest parties from receiving their 

output) and fairness (dishonest parties should receive their outputs if and only if the honest parties 

also receive their outputs). In the 2-party case a generic protocol was created in 1986 by Yao [28] 

that allows two parties to evaluate any function of their inputs, which was later extended [17] to be 

secure against active adversaries (see Section 1.3), and to more than two parties [15]. In realistic 

scenarios, however, these generic protocols are often insufficiently efficient, so that specialized 

protocols are necessary for specific problems to achieve acceptable running times. All schemes that 

we discuss in this paper fall in this category. For an extensive introduction and overview of secure 

multiparty computation, a more elaborate description of Yao’s generic protocol, and a number of 

other protocols, we refer to [19]. 
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1.2 Machine learning  

Machine learning is a branch of artificial intelligence that gives computers the ability to process and 

classify data and to detect patterns from large, noisy or complex data sets, using a variety of 

statistical, probabilistic and optimization tools. For example, data from X-ray images or biomedical 

samples may be used to estimate the chance of someone getting cancer [10]. There are a number of 

distinct types of machine learning algorithms, of which supervised and unsupervised learning 

algorithms are the most important. In the former, the algorithm is presented a labeled set of training 

data or examples in a training phase. After analyzing the training data a function is inferred, which 

can then be applied to new data to for example label or group it. Important supervised algorithms 

include Support Vector Machines (SVM) [9]; Decision Trees [24] and Naive Bayes classifiers. By 

contrast, in unsupervised algorithms there is no separate training phase; instead a set of examples 

(without labels) are given, and it is up to the learner to find the pattern or discover the groups. An 

important example is K-means clustering [20]. We will discuss all of these techniques in more detail 

in Section 2. 

1.3 Adversary models 

Many cryptographic schemes are argued or proven secure with respect to a certain adversary 

model: that is, a set of capabilities that an adversarial entity can use without compromising the 

security goals of the scheme. Which party is the adversary, what capabilities the adversary has, and 

what it means for a scheme to be secure, differs depending on the scheme and on the situation. 

Ideally a scheme stays secure if any party deviates in any way from the protocol (i.e., the active or 

malicious adversary model), but this is often very difficult to achieve at realistic speeds. For this 

reason many schemes (including the schemes that we discuss in this paper) use the semi-honest or 

passive adversary model, in which the adversary must always follow the established protocol, but is 

allowed to retain and study all data that it receives during an execution of the protocol. It is clear 

that this model offers less security, and depending on the situation it may not suffice. To fill the gap 

between these two models, Aumann and Lindell [4] proposed a new covert adversary model, in 

which the adversary has a (non-negligible) probability  to be caught when it deviates from the 

protocol, deterring it from doing so, at relatively little extra cost compared to the passive adversary 

model. They include a protocol for oblivious transfer (in which the sender has two inputs x0, x1; the 

receiver has a bit b; and the protocol ensures that the receiver receives xb but not x¯ b, without the 

sender learning b), that when = 1/2 is 4 times more expensive than contemporary protocols in the 

passive adversary model such as, e.g., [8]. Protocols for computing dot products and set 

intersections in the covert adversary model were introduced in [21]. 
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2 The State of the Art 

2.1 Training machine learning algorithm 

As explained in Section 1.2, supervised machine learning algorithms require a training phase before 

usage, taking into account that there may legal obstructions from the raw training data to be shared 

and copied away from their origin – for example, for many hospitals there are stringent privacy 

regulations forcing medical data to be kept on the premises. In these cases one might take the 

approach of the Personal Health Train [2], and instead bring the algorithms to the data. In the 

Personal Health Train metaphor, each station is a tightly regulated data location that a “train” can 

use. The data at each station is “FAIR” (findable, accessible, interoperable and reusable) [27], and 

can be granularly regulated by the station owner via house rules, specifying what trains have access 

to what data. The “trains” are algorithms executing specific research questions or use cases that 

need FAIR data, under control of the researcher. The “track” sets maintain and check the rules of 

interaction and is the interface between trains and stations. The PHT initiative supports both 

horizontally partitioned data (where the data subjects are partitioned across multiple databases 

containing the same attributes for each patient) and vertically partitioned data (where the attributes 

of data subjects is spread across multiple databases) [16], depending on the use case. Only certified 

research trains and certified FAIR data stations are allowed on the track and their use is fully 

controlled and auditable.  

Closely related is a recent method by Damiani et al. [11] to train SVMs across multiple (horizontally 

partitioned) datasets simultaneously, without needing to merge all patient data in advance at a 

central site. Based on the ADMM method by Boyd et al. [6], which is also used by the PHT initiative 

mentioned above, each dataset runs a software agent called a slave node that trains on the local 

data and exchanges part of the result with a master node. This master node collects all results from 

the slave nodes, calculates new coefficients, and sends these back to the slave nodes. This process is 

performed until the slave nodes converge to the same result, and it is such that during the process 

no information about any patient can be derived from the messages passing between the master 

and slave nodes. When run on data with 2 classes (namely alive or deceased), 2 to 10 features per 

patient, 50 to 500 patients per site, and 2 to 10 sites, the systems takes some 2000 iterations to 

converge. The paper does not mention how long this takes, but since this concerns the training 

phase of the SVM instead of the usage phase (for which e.g., the earlier mentioned method by Bost 

et al. might be used), the running time is arguably of lesser importance. The authors have published 

an (unlicensed) open source implementation of their work. 
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2.2 Using machine learning algorithms    

An important (unsupervised) learning technique is K-means clustering [20], in which a group of n real 

vectors are partitioned into K sets such that each vector belongs to the cluster with the nearest 

mean. This can be done by randomly selecting K locations as initial cluster centers, assigning each 

vector to the closest center, recomputing the centers of the resulting clusters, and repeating this 

process until the cluster centers converge. In such cases it may be necessary to hide the vectors as 

well as the resulting clusters from the party that does the clustering. Since this was introduced in 

2000 [3,18] a number of schemes have been proposed, e.g., [7,13,22], of which [13] by Erkin et al. 

seems particularly promising. In their scheme, the computation is facilitated by a central entity that 

learns essentially nothing about the input vectors or the intermediate and final clustering. The 

scheme uses the passive adversary model, although the scheme can be adapted to work in the 

active adversary model, at a cost. Alternatively, the trust can be distributed by having a number of 

helper users assist in the computations, with the additional advantage of substantially increasing the 

efficiency of the scheme. The paper does not contain a formal security proof, but is nevertheless 

convincing. A preliminary implementation shows that the scheme scales well: clustering 100,000 

vectors of dimension 12 into 10 clusters, using 64 helper users, takes 24 minutes. The authors do not 

seem to have published their implementation, although many of its ingredients are provided in the 

SeComLib library [12].  

More recently Bost et al. [5] proposed a promising set of protocols for a wide array of classifiers, 

including SVMs, naive Bayes, and decision trees. Their scheme keeps both the training model and 

the user input private to the server and the user, respectively. They achieve this by introducing 

protocols for a number of core operations, namely comparison based on [26] (for equality or which 

of two inputs is the largest), argmax, and dot products, that can be composed without losing security 

(in the passive adversary model) to the mentioned classifiers. These protocols are modular in the 

sense that they could also be of use in other models or situations. The paper includes formal security 

proofs, and the authors provide a freely available open source implementation of their scheme that 

achieves impressive runtimes (e.g., 3.8 seconds for a naive Bayes classifier with 24 classes and 70 

features). The paper is well-written and broadly applicable. 
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2.3 Handling sensitive data responsibly    

Especially for privacy-sensitive data it is important that only authorized agents can access and 

modify the data. For example, a doctor may need to access and modify data of one patient, while a 

researcher may need (read-only) access to the medical data of all patients, although he will generally 

not be interested in the identities of the patients. At the Radboud University in Nijmegen, The 

Netherlands, a framework called PEP [25] is being developed that can cryptographically ensure that 

the data can only be accessed by authorized parties, encrypting it in transit and during storage. PEP, 

standing for Polymorphic encryption and Pseudonymisation, uses the flexibility of the ElGamal 

partially homomorphic encryption scheme [14] to cryptographically force that all involved parties 

are aware of the minimum amount of information that they need to perform their role. In this 

context, it is important to distinguish three levels of identification (c.f. [23]): 

– Some data can can completely identify the data subject (e.g., a name);  

– the data can be psuedonymized: two data records can be linked together as coming from the same 

data subject, but the identity of the data subject remains unknown (for example, two data records 

may belong to patient 7486613);  

– the data can be anonymized: multiple data records cannot be linked as coming from the same data 

subject 

For each data record the PEP system internally keeps track of from which data subject it originated, 

but depending on the need of the data user or handler, it can ensure all three levels of identification. 

As long as the data is in the PEP system it is encrypted at all times. The data is at a storage facility, 

from whose perspective the data is psuedonymized. Later on it can be decided who can decrypt the 

data (for example, a doctor or a researcher). This decision is made on the basis of a policy, in which 

the data subject can play a key role. In order to ensure that only the intended recipient can indeed 

decrypt the data, the ciphertext is modified by a trusted party, called the transcryptor, to “fit” the 

ElGamal key of the recipient. This is done after the data was encrypted and stored at the storage 

facility, so that when the data enters the system it need not yet be known who will need to access it. 

The transcryptor only handles encrypted data so it is unaware of its contents, and from its 

perspective, all data is anonymized. Thus, although the transcryptor plays a critical role in the system 

by handling all data, it is completely unaware of both the contents and the owners of the data. 

When the data is decrypted, the identity of the data subject may or may not be revealed to the 

receiver, depending on the relevant policies. In addition, for accountability the system ensures that 

all transactions are logged. The PEP system will also allow researchers to securely export the data 

that they can access to the DRE system [1], for Digital Research Environment, allowing them to make 

use of their own analytical online workspace to process the data in a secure environment and safely 

share it with other researchers. 
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