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Summary  
This document describes the development of a proof-of-principle that predicts growth evolvement 

of infants without the need to share sensitive user data in plain-text. All analyses are performed in 

the homomorphic domain such that (parents and doctors of) infants gather novel insights while third 

parties don’t learn anything from the sensitive user data.  
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1 Introduction 
Comparing and enriching user profiles using data of different parties can reveal novel and interesting 

insights. However, this usually comes with an undesirable side effect: the party that combines and 

analyses profiles obtains access to sensitive data. A proof-of-principle was developed in the PRANA-

DATA project that allows a third party to analyze and combine homomorphically encrypted user 

profiles. By encrypting user profiles, sensitive data remains unknown to the third party while new 

insights can still be gathered.  

The proof-of-principle was developed for the use case of predicting growth development of young 

infants. It can be seen as a more secure and privacy enhanced implementation of the “curve 

matching” method proposed by van Buuren (2014). The present document motivates and describes 

this proof-of-principle called Secure Patient Matcher (SPM). The first sections briefly explain curve 

matching and homomorphic encryption. Section 2 explains the architecture and analysis pipeline of 

the Secure Patient Matcher. 

1.1 Predict growth using curve matching 
Imagine Alice, a three months old baby. We would like to predict Alice’s growth development and 

estimate whether growth issues such as stunting and obesity are likely to occur when she is a 

toddler. These growth predictions can be made using curve matching (van Buuren, 2014). This 

technique exploits historical growth data and finds existing children in the historical database that 

are similar to the current child (e.g., Alice). The growth patterns of the matched children suggest 

how the current child might evolve in the future (see Figure 1). We use the SMOCC dataset 

containing historical growth data of about 2000 children (Herngreen et al, 1992). Homomorphic 

encryption was used to predict in a privacy enhanced manner that does not require sharing plain 

data. 

 

Figure 1: Curve matching is used to predict growth evolvement of young infants using historical data 

of similar children. Homomorphic encryption was applied to predict in a privacy enhanced manner. 
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1.2 Privacy-enhanced analyses using homomorphic encrypting 
User data is usually analyzed in the plain-text domain. By doing so, parties that process data get to 

know sensitive information about users. Data can be encrypted to enhance privacy. Encryption turns 

plain-text data into unreadable chipertext. Encrypted data can usually only be read, analyzed or 

altered when one has access to a proper decryption key. This characteristic makes traditional 

encryption unsuited for privacy-enhanced data analyses.  

Using homomorphic cryptosystems, however, operations can be performed on ciphertexts such that 

decrypting the result of the operation is the same as the result of some operation performed on the 

plaintexts. Most homomorphic cryptosystems support either additive or multiplicative operations 

and are called partly-homomorphic. ElGamal (multiplicative) and Paillier (additive) are popular 

partly-homomorphic cryptosystems. Fully-homomorphic cryptosystems support both multiplicative 

and additive operations in the encrypted domain. Hence, these systems can (in theory) support all 

possible data analysis.  

In practice both partly and fully homomorphic cryptosystems have drawbacks. For instance, an 

increase of computation time and allocated memory. Furthermore, only a few stable homomorphic 

implementations of popular analyses like regression, random forests and support vector machines 

exists. 

A proof-of-concept for the curve matching analyses was developed in this project using Paillier’s 

partly-homomorphic cryptosystem1. Sensitive user data was encrypted in the user domain before 

sending it to the party performing the analyses. In this manner, the analysis party could compute 

with the sensitive data without learning anything from it. Figure 2 displays this procedure. 

 

Figure 2: Sensitive data is homomorphically encrypted in the user domain. Analyses are performed 

using this encrypted data. This procedure enhances privacy because third parties are unable to read 

sensitive user data.   

  

                                                           
1 https://en.wikipedia.org/wiki/Paillier_cryptosystem 
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2 Secure Patient Matcher (SPM) 
The Secure Patient Matcher predicts growth patterns of young children using homomorphically 

encrypted data records of peers. We use a semi-honest security model. This means that all 

components/parties are curious: they want to know as much as possible. However, they are honest 

and do follow the protocol. A simplified architecture of the Secure Patient Matcher proof-of-

principle is displayed in Figure 3. Section 2.1 describes the steps included in this architecture. 

The proof-of-principle was developed in Python. The components were packaged Docker images, 

communicate with each other using web-API’s and can operate in different environments. For 

example, the analysis and decryption server might be run by different parties.  

All homomorphic operations were performed using the “python-paillier” library2. This library was 

developed by the Australian research institute CSIRO and implements the Paillier cryptosystem. The 

library integrates with popular data analytics tools like Numpy. Although not all operations were 

supported by this library, the integration with other tools is an advantage when applying 

homomorphic encryption in a real-world scenario. 

 

Figure 3: Simplified architecture of the Secure Patient Matcher proof-of-principle.  

 

 

 

                                                           
2 https://pypi.python.org/pypi/phe/ 
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2.1 Prediction pipeline 
Predicting the growth pattern of a young baby using homomorphic encryption is performed using 

these steps:  

1. Bob and other users have their own historical growth data and a comparison metric, which is 

the length measured at the age of twelve months. The growth data is homomorphically 

encrypted in the user domain. Encryption is performed using a single public key and makes 

the data unreadable for all other parties. The public key cannot be used to decrypt any data. 

The comparison metric is not encrypted as it doesn’t represent sensitive information. 

2. The encrypted growth data and comparison metrics are stored in a data storage. 

3. Parents of young children can ask questions to the analysis server now. Alice(‘s father), for 

example, would like to know her expected growth pattern because this prediction indicates 

whether growth issues are likely to occur. Alice also sends her comparison metric when 

asking the question. There are models available to calculate a comparison metric based on 

whether a child is a twin member, the mother smoked during pregnancy, etc. 

4. The analysis server queries relevant encrypted data from the data storage. This concerns 

data of the five children having a comparison metric most similar to that of Alice. 

5. The analysis server aggregates the data of these similar users in the homomorphically 

encrypted domain. The input data and obtained answer are both encrypted such that the 

server doesn’t learn any sensitive information about the children. The server does learn the 

plain comparison metrics. However, these values are not linked to known individuals and 

represent the (expected) length at the age of twelve months. Eventually, the analysis server 

thus learns something which is already publically known, namely the distribution of lengths. 

6. The analysis server sends the encrypted answer back to Alice. 

7. Alice forwards the encrypted answer to the decryption server. This is the only party having 

access to the private key which is required for decryption. Alice can add a random number 

before forwarding the answer. The decryption server then doesn’t learn the actual answer 

but the sum of the answer and a random number. After decryption, Alice subtracts the 

random number from the decrypted data to obtain the actual answer. Alice learns her 

expected growth pattern now. 
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